Appointment Type |
Department |
Division |
Rank |
Primary |
Joint Pathology |
Molecular & Cellular Pathology |
Professor |
Secondary |
Cell, Developmntl, & Integrative Biology |
Cell, Developmntl, & Integrative Biology |
Professor |
Center |
Comprehensive Cancer Center |
Comprehensive Cancer Center |
Professor |
Center |
Comprehensive Cardiovascular Ctr |
Comprehensive Cardiovascular Ctr |
Professor |
Center |
Comprehensive Diabetes Center |
Comprehensive Diabetes Center |
Professor |
Center |
Comprehensive Neuroscience Center |
Comprehensive Neuroscience Center |
Professor |
Center |
Med - Cardiovascular Disease |
Ctr Cardiovasc Bio (Org Ret) |
Professor |
Center |
Ctr for Clinical & Translational Sci |
Ctr for Clinical & Translational Sci |
Professor |
Center |
Ctr for Free Radical Bio |
Ctr for Free Radical Bio |
Professor |
Center |
Integrative Center for Aging Research |
Integrative Center for Aging Research |
Professor |
Center |
Nephrology Research & Training Center |
Nephrology Research & Training Center |
Professor |
Center |
Nutrition Sciences Research |
Nutrition Obesity Res Ctr (NORC) |
Professor |
|
Cellular and Molecular Biology Program |
Integrative Biomedical Sciences |
Medical Scientist Training Program |
Molecular and Cellular Pathology Program |
Pathobiology and Molecular Medicine |
|
Publication |
PUBMEDID |
Degrell P, Cseh J, Mohás M, Molnár GA, Pajor L, Chatham JC, Fülöp N, Wittmann I. Evidence of O-linked N-acetylglucosamine in diabetic nephropathy. Life Sci. 2009 Mar 27;84(13-14):389-93. |
19302818 |
Glickson JD, Forder JR, Chatham JC. Imaging of cardiotoxicity. Mol Imaging. 2008 May-Jun;7(3):115-7. |
19123981 |
Zou L, Yang S, Champattanachai V, Hu S, Chaudry IH, Marchase RB, Chatham JC. Glucosamine improves cardiac function following trauma-hemorrhage by increased protein O-GlcNAcylation and attenuation of NF-{kappa}B signaling. Am J Physiol Heart Circ Physiol. 2009 Feb;296(2):H515-23. |
19098112 |
Marsh SA, Dell'italia LJ, Chatham JC. Interaction of diet and diabetes on cardiovascular function in rats. Am J Physiol Heart Circ Physiol. 2009 Feb;296(2):H282-92. |
19036853 |
Laczy B, Hill BG, Wang K, Paterson AJ, White CR, Xing D, Chen YF, Darley-Usmar V, Oparil S, Chatham JC. Protein O-GlcNAcylation: a new signaling paradigm for the cardiovascular system. Am J Physiol Heart Circ Physiol. 2009 Jan;296(1):H13-28. |
19028792 |
Xing D, Feng W, Nöt LG, Miller AP, Zhang Y, Chen YF, Majid-Hassan E, Chatham JC, Oparil S. Increased protein O-GlcNAc modification inhibits inflammatory and neointimal responses to acute endoluminal arterial injury. Am J Physiol Heart Circ Physiol. 2008 Jul;295(1):H335-42. |
18469144 |
Champattanachai V, Marchase RB, Chatham JC. Glucosamine protects neonatal cardiomyocytes from ischemia-reperfusion injury via increased protein O-GlcNAc and increased mitochondrial Bcl-2. Am J Physiol Cell Physiol. 2008 Jun;294(6):C1509-20. |
18367586 |
Fülöp N, Feng W, Xing D, He K, Not LG, Brocks CA, Marchase RB, Miller AP, Chatham JC. Aging leads to increased levels of protein O-linked N-acetylglucosamine in heart, aorta, brain and skeletal muscle in Brown-Norway rats. Biogerontology. 2008 Jun;9(3):139-51. |
18185980 |
Shan D, Marchase RB, Chatham JC. Overexpression of TRPC3 increases apoptosis but not necrosis in response to ischemia-reperfusion in adult mouse cardiomyocytes. Am J Physiol Cell Physiol. 2008 Mar;294(3):C833-41. |
18184877 |
Chatham JC, Nöt LG, Fülöp N, Marchase RB. Hexosamine biosynthesis and protein O-glycosylation: the first line of defense against stress, ischemia, and trauma. Shock. 2008 Apr;29(4):431-40. |
17909453 |
Liu J, Marchase RB, Chatham JC. Increased O-GlcNAc levels during reperfusion lead to improved functional recovery and reduced calpain proteolysis. Am J Physiol Heart Circ Physiol. 2007 Sep;293(3):H1391-9. |
17573462 |
Nöt LG, Marchase RB, Fülöp N, Brocks CA, Chatham JC. Glucosamine administration improves survival rate after severe hemorrhagic shock combined with trauma in rats. Shock. 2007 Sep;28(3):345-52. |
17545939 |
Zou L, Yang S, Hu S, Chaudry IH, Marchase RB, Chatham JC. The protective effects of PUGNAc on cardiac function after trauma-hemorrhage are mediated via increased protein O-GlcNAc levels. Shock. 2007 Apr;27(4):402-8. |
17414423 |
Marsh SA, Powell PC, Agarwal A, Dell'italia LJ, Chatham JC. Cardiovascular dysfunction in Zucker obese and Zucker diabetic fatty rats: the role of hydronephrosis. Am J Physiol Heart Circ Physiol. 2007 Jul;293(1):H292-8. Epub 2007 Mar 9. |
17351065 |
Fulop N, Zhang Z, Marchase RB, Chatham JC Glucosamine cardioprotection in perfused rat hearts associated with increased O-linked N-acetylglucosamine protein modification and altered p38 activation. Am J Physiol Heart Circ Physiol. 2007 May;292(5):H2227-36. |
17208994 |
Wang P, Fraser H, Lloyd SG, McVeigh JJ, Belardinelli L, Chatham JC. A comparison between ranolazine and CVT-4325, a novel inhibitor of fatty acid oxidation, on cardiac metabolism and left ventricular function in rat isolated perfused heart during ischemia and reperfusion. J Pharmacol Exp Ther. 2007 Apr;321(1):213-20. |
17202401 |
Fulop N, Mason MM, Dutta K, Wang P, Davidoff AJ, Marchase RB, Chatham JC. Impact of Type 2 diabetes and aging on cardiomyocyte function and O-linked N-acetylglucosamine levels in the heart. Am J Physiol Cell Physiol. 2007 Apr;292(4):C1370-8. |
17135297 |
Liu J, Marchase RB, Chatham JC Glutamine-induced protection of isolated rat heart from ischemia/reperfusion injury is mediated via the hexosamine biosynthesis pathway and increased protein O-GlcNAc levels. J Mol Cell Cardiol. 2007 Jan;42(1):177-85 |
17069847 |
Liu J, Marchase RB, Chatham JC. Glutamine-induced protection of isolated rat heart from ischemia/reperfusion injury is mediated via the hexosamine biosynthesis pathway and increased protein O-GlcNAc levels. J Mol Cell Cardiol. 2007 Jan;42(1):177-85. |
17069847 |
Fulop N, Marchase RB, Chatham JC. Role of protein O-linked N-acetyl-glucosamine in mediating cell function and survival in the cardiovascular system. Cardiovasc Res. 2007 Jan 15;73(2):288-97. |
16970929 |
Champattanachai V, Marchase RB, Chatham JC. Glucosamine protects neonatal cardiomyocytes from ischemia-reperfusion injury via increased protein-associated O-GlcNAc. Am J Physiol Cell Physiol. 2007 Jan;292(1):C178-87. |
16899550 |
Yang S, Zou, L-Y, Bounelis P, Chaudry I, Chatham JC and Marchase RB. Glucosamine administration during resuscitation improves organ function following trauma-hemorrhage. Shock 25: 600-607, 2006. |
16721268 |
Liu J, Pang Y, Chang T, Bounelis P, Chatham JC and Marchase RB. Increased hexosamine biosynthesis and protein O-GlcNAc levels associated with myocardial protection against calcium paradox and ischemia J. Mol. Cell. Cardiol. 40:303-312, 2006 |
16337959 |
Nagy T, Champattanachai V, Marchase RB and Chatham JC. Glucosamine inhibits angiotensin II induced cytoplasmic Ca2+ elevation in neonatal cardiomyocytes via protein-associated O-GlcNAc Am. J. Physiol. - Cell 290: C57-C65, 2006. |
16107505 |
|
|